Home » •I¹Mð




The 3 temporal dimensions or ‘states’ of matter, Spe-gaseous, energetic states, ST, liquid balanced states and Tƒ informative solid states, form together the 3rd isomorphism of  molecular matter in its ∆+1 social scale.

10 Isomorphisms of Matter.


0-1th isomorphism: MONAD:  Œ-Point x ∞ World = Constant mind Mapping

Solid crystals are the most perfect forms of matter, and accordingly grow till becoming the censer and informative guidance of planets and larger rock formations.

1-0 isomorphism: Fractal Generator: Its 3 organic/networks: Spe≤≥ ST≤≥Tƒ

In geological structures the interplay of gas, liquid and solid cycles creates the conditions for life to flourish.

Its Existential Constants: SxT, S/T, T/S, ∑S>∏T>∆±1,

The main law of matter is the conservation of momentum, whose dimensional parameters, M, L, 1/T=frequency are the 3 fundamental ∆-S-T dimensions of the 5th scale, as mass is the ‘perception’ of the balance between pure space and pure mass (G-curvature), hence the ∆-scalar  parameter, and temperature the same ∆-parameter in the 4th scale. Accordingly the constant of gases, is the main ∆-constant of state physics that also relates the time, space and measure of ‘active motion’ in the 5th scale.


S=T isomorphisms.

5th Isomorphism: Its 5 actions : ∆(æ-4; ï-3; e-2; œ-1; û+1)

ƾ-4: Electromagnetic and gravitational fields move matter.

ƕ-3: Perception happens only in crystals, and magnetized metal, of the 2 different forces: electromagnetism and gravitomagnetism (quartz, iron being the most perfect perceivers)
Accordingly only regular forms happen in both substances, where the angles of perception are isomorphic:


∆e-2: Matter obtains energy from heat. Thermodynamics studies those laws.

∆ Œ-1: Crystals reproduce its ‘mother cells’. Chemical reactions are the ‘creative’ 8th isomorphism, which increases the reproduction of less ordered species:


∆ §10≈û+1: Crystals evolve in huge forms, of planetary size, most other matter forms mere aggregates of limited order, in long time cycles.

2nd isomorphism: space-time dualities: Sp≈Tƒ

6.einstein mass

Fractal vortices of gravitation are masses, which coil into Tƒ-clocks of space-time or uncoil into lineal energy according to:

M=Ec2, where M(t) is a vortex of informative gravitational forces is the main duality of ALL states of matter.

3rd Isomorphism: Networks Social classes: Ξ±3

Crystals control as the solid informative state and reproduce with the other substances. Metals due to its highly social conductive ‘gas of electrons’ and multiple valences are also the top forms of matter.

Amorphous glasses and gases last shorter in time and become the energy of chemical reactions.


6th isomorphism. Creative diversification: 1,2,3,4.

The enormous variety of rocks, liquid substances and chemical compounds emerges into the 4th and 5th plane.



7th Isomorphism: Its ages and evolution: [Max. Sp x Min. Tƒ > Sp≈Tƒ > Max. Tƒ x Min. Sp]∆±1

The 3 ages of evolution of matter are the energetic, gas age, the liquid, balanced Sp≈Tƒ and the solid Max. Tƒ state.

Rock, water and gas cycles are accordingly its 3 ages in motion:


8th isomorphism: the motions an world cycles of matter are studied by the thermodynamics of states


10th Isomorphism: Its planes of Existence: ∆±4 Fractals

∆-1 atoms, Tƒ-solid crystals and S=T and max. Sp gas states of matter  and ∆+1 planets and stars are the 3 existential scales of matter

9th isomorphism. Social scales. §10

Matter grows by aggregation till a limit defined by chemical and physical properties, but as crystal cores and magnetic fields guide the increase of size of matter, finally the system reaches the planet/star dual forms.




In the 4th scale the language changes. Molecules are no longer externally guided by quantum laws but by thermodynamic laws, as its clocks of time, and rods of space have changed. So the species that come after the molecular scale, matter species transition to these new clocks of time and rods of space.

We enter therefore in an entire new Universe as the language of time – clocks of information – and space – distances and motions, change. Let us remember first in which consists this change:


In the graph, self-centred in the thermodynamic scale of biological beings and matter, we see how the clocks of time accelerate between scales downwards and the rods of space or radius of those cycles grows in lineal fashion, but both remain constant through a long stretch of at least 3 ∆ scales. Temperature then becomes the intermediate language, departing from assemblies of quantum numbers into assemblies of thermodynamic ranges.

If the correct Bohmian pilot wave theory of quantum physics ad the guiding equation of the ∆-1 field-wave, which in turn determines the position of particles, considering then both the present, wave, Schrodinger’s view an the Past to Future, field-particle interaction of the Bohmian, Heisenberg’ matricial point of view for a full description of quantum events, we obtain a closer similarity on the equations of quantum physics and thermodynamics, which shows how essentially those statistical concepts (also applied to socio-biological systems) can describe rather deterministically, the structure of a system of any 2 such dual scales.

Thermodynamic Matter.

We thus conclude that matter is thermodynamics. That is in space we see a super organism of molecular atoms ensembled into a ternary system, we can define with a generator or in classic thermodynamic equations. This space-system will in turn have a development in time, which will be thermodynamic, guided by parameters of time related to temperature and space, related to state. But in essence the laws of those systems will obey the ensemble laws of social evolution of parts into wholes.

A thermodynamic system thus will be initially  a precisely defined region of the universe under study.

In classic theory, everything in the universe except the system is known as the surroundings – the ∆+1 world-universe of GST.

A system is separated from the remainder of the universe by a boundary which may be notional or not, but which by convention delimits a finite volume. Exchanges of work, heat, or matter between the system and the surroundings take place across this boundary; which therefore becomes the GST membrane of the system of max. Spe (topology-function).

Boundaries thus define an internal region where the thermodynamic cycles of exchanges of energy and negantropy≈formal state takes place. Energy is ‘stored’ as information, when the state of the system changes. Ensembles follow decametric laws that create new ’emerging domains’, and so on. Let us investigate the fundamental equivalences between thermodynamics and GST.

In practice, a thermodynamic boundary is simply an imaginary dotted line drawn around a volume when there is going to be a change in the internal energy of that volume. Anything that passes across the boundary that affects a change in the internal energy needs to be accounted for in the energy balance equation. The volume can be the region surrounding a single atom resonating energy, such as Max Planck defined in 1900; it can be a body of steam or air in a steam engine, such as Sadi Carnot defined in 1824; it can be the body of a tropical cyclone, such as Kerry Emanuel theorized in 1986 in the field of atmospheric thermodynamics; it could also be just one nuclide (i.e. a system of quarks) as hypothesized in quantum thermodynamics, which essentially studies those regions of the universe in which the laws of quantum and thermodynamic planes of existence converge and can be studied together.

Boundaries are of four types: fixed, moveable, real, and imaginary. For example, in an engine, a fixed boundary means the piston is locked at its position; as such, a constant volume process occurs. In that same engine, a moveable boundary allows the piston to move in and out. For closed systems, boundaries are real while for open system boundaries are often imaginary.

Generally, thermodynamics distinguishes three classes of systems, defined in terms of what is allowed to cross their boundaries:

screen-shot-2016-11-27-at-10-01-00In the graph, classic thermodynamics classifies systems according to boundaries (|-Spe region). When boundary does not exist (open system), we cannot fully talk of a thermodynamic system as one of it ternary elements is not’, so a whole is not created.

Then we find in the other extreme an isolated system, which does not have in a sense boundary, as it does not communicate with the external fractal Universe and becomes a whole in itself. So the more interesting cases are those in which the ‘monad’ is not fully isolated but does communicate and exchanges energy in the form of work and heat, and information in the form of state and shape of the system. Those systems who do not move: ∆e=0 (mechanically isolated), those who do not deform (thermally isolated), ∆i=0, are partial cases of the full thermodynamic system, a closed system, which allows both changes on e and i, work and heat-state.

Now the fundamental thermodynamic law is that time never stops, so when one arrow of time stops – such as entropic motion – another arrow of time, growth of information, of form-in-action, of form, grows. In the case of a thermodynamic ensemble, the external motion ceases and the internal motion, or evolution of information starts. We can talk of locomotion and evolution as the two internal and external, ∆+1, ∆-1 forms of motion more fundamental to the Universe, and in that sense understand thermodynamics as the change from external to internal motion states.

Thermodynamic equilibrium. The present state.
As time passes in an isolated system, internal differences in the system tend to even out and pressures and temperatures tend to equalize, as do density differences. A system in which all equalizing processes have gone to completion is considered to be in a state of thermodynamic equilibrium; or present state, from which it can go both ways. So at thermodynamic equilibrium the present system becomes balanced between the past-entropy and future-state form possible paths.

In thermodynamic equilibrium, a system’s properties are, by definition, unchanging in time. Systems in equilibrium are much simpler and easier to understand than systems which are not in equilibrium. Often, when analysing a thermodynamic process, it can be assumed that each intermediate state in the process is at equilibrium. This will also considerably simplify the situation. Thermodynamic processes which develop so slowly as to allow each intermediate step to be an equilibrium state are said to be reversible processes.

By definition thus there are 3 time arrows in thermodynamics: present, equilibrium (liquid) states; past, entropic (gaseous) states of growing heat and diminishing form and its inverse, relative future, solid, crystal states of maximal information and min. Spe:


In the graph, we can compare the different states of thermodynamic matter from the upper perspective of its relationship with gravitational states. Here the obvious connection are the topological elements that are common to EFE equations of space-time topologies and thermodynamic states. But the language will change again as the clocks of gravitational masses are different to those of thermodynamic heat vibrations.

States and processes
When a system is at equilibrium under a given set of conditions, it is said to be in a definite thermodynamic state. The state of the system can be described by a number of state quantities that do not depend on the process by which the system arrived at its state. They are called intensive variables or extensive variables according to how they change when the size of the system changes. The properties of the system can be described by an equation of state which specifies the relationship between these variables. State may be thought of as the instantaneous quantitative description of a system with a set number of variables held constant.

A thermodynamic process may be defined as the energetic evolution of a thermodynamic system proceeding from an initial state to a final state. It can be described by process quantities. Typically, each thermodynamic process is distinguished from other processes in energetic character according to what parameters, such as temperature, pressure, or volume, etc., are held fixed. Furthermore, it is useful to group these processes into pairs, in which each variable held constant is one member of a conjugate pair. Let us then first define the parameters of Spe and Tiƒ in thermodynamics which are:

  • Pressure, which is inverse to the volume and hence inverse to the Spe, a parameter of Tiƒ relative order, such as ∆P->∆Tiƒ.
  • Temperature inverse to preasure, hence initially the parameter of Spe, parallel to volume≈temperature≈Spe.
  • Volume: the space-time configuration underlying the thermodynamic process both in spatial extension and form.

So once those 3 relative parameters, Pressure (Tiƒ), Temperature (Spe) and Volume (static, present ST) are understood, classic studied thermodynamic processes are ‘ceteris paribus’ cases which are partial equations of the Γ(states) Generator:

  • Isobaric process: occurs at constant pressure
  • Isochoric process: occurs at constant volume (also called isometric/isovolumetric)
  • Isothermal process: occurs at a constant temperature
  • Adiabatic process: occurs without loss or gain of energy by heat
  • Isentropic process: a reversible adiabatic process, occurs at a constant entropy
  • Isenthalpic process: occurs at a constant enthalpy
  • Steady state process: occurs without a change in the internal energy



The atom the organism of the lower scales of physics. The ternary, i-logic topological structure of atoms.

Screen Shot 2016-04-08 at 00.01.57

An atom is a space-time field divided in 3 species, informative masses or quarks, energetic gravitational and electromagnetic networks and an intermediate space-time, the electronic nebulae, which bends light into ‘fractal’, ultra-dense ∆-1 photons of light. As such it can be studied with the same 5D space-time structural ‘generator’ of any other scale of the 5th dimension.

In the graph, an atom is a space-time field divided in 3 space-time zones: its informative quark center, the nucleus; the external reproductive membrane, made of electrons, which evolve socially in bigger Spe x Tiƒ membranes when atoms become molecules; while informative, gravitational and energetic, light networks shape their intermediate space-time.

The topology of the atom is thus clear. The electron acts as an external ‘spherical plane’, a membrane of Entropy. In the center quarks are the informative vortices. In between Entropy and form is transferred with forces, which often decouple, reproducing new particles and antiparticles. There are 3 informative families of quarks-mass, due to the evolution of information in 3 ages or horizons of increasing form: each quark family is thus an age in the evolution of informative matter.

Astrœ-physics, by the unification of charges and masses, into a single group, that of time vortices, with a symmetry of scale, based in Log10 functions, is both a cosmological and atomic science.

In the strict sense, unlike astrophysics, which studies only the external motions of physical systems in space, and dedicates to the study of the other 5 motions, generation, growth, evolution, diminution and extinction, ‘partial theories’ (big bang theories of explosive deaths and births, H-R diagram of evolution of stars, etc.), atomic systems have been studied in more detail due to the closeness of observations. So molecular atomic systems, are perfectly described with an architectonical precision as they build up our scales of existence. Trouble in definition start within the atomic scale when our observing instruments, which CANNOT be smaller than the electronic mind that observes, try to analyze the minimal quanta of information of our universe, h-quanta, and of our space, c², light space times.

Now, the study of the full 6 motions is better expressed with the jargon and language of 5D sciences, which includes clear changes of paradigm, such as the study of the worldcycle of which any worldline is obviously a partial ‘element’ (as all lineal geometries of space, Sp, are mere ‘parts’ of a larger cyclical geometry of time, Tƒ, to which they will tend in any ‘future function’, sub-tended into the future.)

Now physics is NOT really more than the study of lineal motions and all other elements of generation, growth, diminution, etc, with mathematical equations, specifically, since Newton, differential equations. So it is important to run a parallel analysis of what they mean.

And in that sense we can talk of 3 great ages of mathematical physics, in a full cycle:

  • The beginning with numerical systems of calculus of ‘quanta of physics’
  • The age of differential equations
  • The age of imaginary Complex equations
  • The age of numerical calculus of quanta of physics.

In as much as Physics has not a qualitative purpose, it easily reduced to the study of physical parameters with partial differential equations, which are merely the lineal version of the more complex ‘curved geometries’, in which the ß ∆x difference between the curve and the lineal function is considered a variable constant.

So let us also start parallel to physics with the analysis of

The zero sum of entropy. The program of Existence as a zero sum.

The entropy of the Universe is constant as the worldcycle is a zero sum of entropy. Tƒ fully understand this we must rewrite the equation of entropy in terms of 5D functions.

∆S= entropy dS is equal to this amount of energy for the reversible process divided by the absolute temperature of the system:

Screen Shot 2015-10-14 at 00.31.42

We have assumed the temperature is constant but what truly is constant is entropy because it is a reversible closed cycle with the process of death and the asymptotic arrows between planes of existence that balance the missing quantities in a single plane, when we consider the ‘inverse loop’ taking place in the i±2 transfers and actions of death:

Thus dS=0, and d Q r/T=0 becomes a Lagrangian where the active clock of time is temperature and Qr the energy of the system.

From where we can consider different equations of thermodynamics.

Thus the main difference of cyclical time, vs. lineal time is the concept of entropy, in the cyclical Universe the entropy of the Universe for the whole system is zero. And so it is for all relative systems, as they are balanced by transfers between planes of existence, notably the positive order acquired in the long arrow of informative social evolution, ∆+1, and then in the fast explosive death reversed process, when the wave falls fast into the past, erasing all its information of future, higher planes of existential organization: ∂’’œ<<∑∑∆-2

Now to understand quantum jumps through 2 Universal ∆-planes, an amazing feat that puts in contact a macrocosms with its lowest cellular/atomic planes, we should consider this astounding explosion of expansive Entropy to be balanced with the total gain in entropy by the same system during its arrow of Life:

Life Cycle: Tƒ-1: Seminal wave:  ∑ S (life semi-action-cycle, h/2) = ∑ ∆-1> ∆<Max. Energy (youth) > Reproductive ∑œ wave > Max. Information: Tƒ+1 = ∆S-2: Death

In the act of death the expansion of entropy which jumps down at exponential rhythms the social creative process that lasted an entire life, the growth of information and order, or arrow of future of life becomes disintegrated in an instant.

So it happens in physical matter in the process of nuclear bombs, novae, quasars and big bangs. The difference is that the creative process from biochemical molecules to cells and fetus emerged into the ∆-scale for a long life which lasted so much time, but changed so little the volume of vital space of the system, explodes now in a quantum of time, dissolving all its networks.

It is precisely that difference of speed of life <<<< to death in the acceleration and deceleration of the process of collapse what creates an apparent winning arrow for entropy. But this idea would be misleading since for a much longer period a particle, a soul of a living, biological entity, a crystal in a planet has created order, at a very slow tempo. Time might be considered subjective in this orderly long time processes and perhaps it is. That is we can construct a frame of reference in which time cycles do not suffer accelerations and decelerations in positions of change of state, from relative past, to present to futures and back.

But the overwhelming evidence is this:

– The maximal speed of destruction of information is in the negative max. ∆S moment of death, which lasts hardly any time: ∆S x ∏ Tƒ = Death, disorder

– The creation of information in slow, cold environments is the opposite arrow that lasts much more in time but hardly consumes any external information.

Both should be balanced completing the conservative laws of fields with equipotential, immortal paths of eternal motion.

A Space-Time cycle of finite Duration, or life-death cycle is thus defined as:

∆-1, ∑∆-1>S∆<ST>Tƒ<<S∆-2 if we are to use algebraic notation of the different partial equations of a world cycle.

If we define the function, W=∫∫∂ (a,e,I,o,u) dtds=0, as the worldcycle or function of existence of a system between birth and extinction, this is the fundamental equation we seek to resolve for any being. 

Now when the meaning of temperature is understood we can consider again, the fundamental events of all the scale of physics with an enhanced understanding of the meaning of its parameters.

Tƒ start with the frequency of the light wave, the charge an accelerated vortex like the mass, with its curvature Q, and G, form a system of clocks of time which define perfectly a beat, related to an energy, which is inverse. And so we find ourselves with different degree of integration worldcycle or minimal forceful action, of such parameters, as:

H = E x V, T = d Q/ d S= d Q x dO, which we call Order, the inverse function to entropy.

And so on: , we define a simple law of the least action, to unify the fundamental equation of ach of those scales:

F= A x E, -∂H/∂q=dp/dt and its inverse function, ∂H/∂p=dq/dt

Indeed, in cyclical time, we consider that entropy has as a secondary feature the quantity of information of the system, multiplied by conserving its actions in the multiple hyperbolic S∆-1,2, fields of existence

Thus in the scales of matter we find, the functions of existence, in the actions, H, T,

Those 5 actions determine therefore a Program of existence, which all systems follow in a mechanical, vegetative or conscious manner. And thus we can also write the 5th isomorphism, as a Generator Equation of all the actions of the Universe, written as a dynamic, temporal feed back equation or a static, organic, structural, spatial equation:

∑Se <=> Tƒ ….. or Se x Tƒ= ST±4


∑ represents the social gathering of individuals into Universals (∂u).

S signifies the motions in space, (∂a).

e signifies the increases of structural energy of the system, ∂e.

<=> in the dynamic expression or X in the structural one, signifies the combination of Se and Ti which gives birth to ‘reproductive’ actions and offspring: ∂œ.

And Ti signifies, the perceptive actions of the being, ∂i

And this 5 actions are represented also in the ‘philosophical equation’ Sp x It = ST, whereas E≈ ∂e, S≈∂a, I≈∂I, x≈∂o, ST≈ ∂U

Again we use any of the different expressions of the Generator Equation, despite the initial confusion it might create, so the readers learns to ‘change its chip’ from the quantitative, single, exact analysis of reality to a conceptual, qualitative, multiple, ‘fractal’, iterative perception based in similarities and homologies, parallelisms and conceptual complexity.

Ultimately only when he changes his mind’s frame and accepts those enriching dualities and isomorphisms he will be able to acquire the ‘enlightened’, ‘Buddhist’ perception of the pantheist Universe required to fully integrate itself within the whole.

This is the Program of Existence that all systems follow to survive, deduced from the structural elements of any fractal Superorganism of scalar space and cyclical time, which will try to maintain stable its ST-form and reproduce it beyond death in small ‘actions’ and full ‘reproductions’ of the being, such as:

∑œ Reproductions of a being across its ST±4 planes is the existential game we all play.

We can write the Generator equation, as  ∑ExI=ST,  this alternative ‘old expression’ of the Generator means that to “Exist’ is to absorb and emit entropy/energy and information in a series of actions, ∑, which try to maintain a system in balance with its space-time environment. And all this is managed by the relative zero-point, Tƒ, of the system:

To Exi=st is therefore a tautological word. The rules of existence are in that sense common to all beings. What will vary is the specific form in which a certain particle, head or informative centre, Tƒ, manage to survive by its actions. Or fail.




1 Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: